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57 ABSTRACT

An implant comprises a structure that may be implanted into
tissue and that has a first material property at normal body
temperature. The first material property is variable at
elevated temperatures above normal body temperature. The
implant also has a plurality of particles dispersed in the
structure that are adapted to convert incident radiation into
heat energy when irradiated with electromagnetic radiation.
The particles are in thermal contact with the structure such
that exposure of the particles to incident radiation raises the
temperature of the structure thereby changing the first mate-
rial property relative to the first material property at normal
body temperature.

11 Claims, 11 Drawing Sheets
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THERMO-MECHANICALLY CONTROLLED
IMPLANTS AND METHODS OF USE

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/892,553, filed Sep. 28, 2010, which is a
continuation of U.S. patent application Ser. No. 12/033,586,
filed Feb. 19, 2008, which claims the benefit of U.S.
Provisional Application No. 60/890,703, filed Feb. 20, 2007,
the full disclosures of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to medical apparatus and
methods, and more specifically to implants and biodegrad-
able implants for use in the vascular system as well as other
body lumens and cavities.

The use of implants in body tissue is becoming increas-
ingly important in medical treatment. Examples of implant
usage include alteration of tissue in cosmetic or reconstruc-
tive procedures such as breast augmentation as well as
creation, preservation or closure of lumens, channels or fluid
reservoirs (e.g. stenting stenotic lesions, exclusion of aneu-
rysms or embolic coils). Implants are also used as matrices
for tissue growth (e.g. orthopedic bone fusion procedures),
to control unwanted tissue growth and for delivery of
therapeutic agents to tissue. Implants may also be employed
to join tissue surfaces together or for isolating or protecting
tissue lesions in order to enable or mediate healing. Implants
are also used to mediate the rate of substances or energy
passing into, out of, or through tissue.

Often, implants are fabricated using various metals and/or
polymers. Examples of common metals include stainless
steel, titanium, nickel-titanium alloys like Nitinol and poly-
mers such as PTFE (e.g. Teflon®), polyethylene, polyure-
thane and polyester are often used in implants. A potential
disadvantage of these permanent implants is that the implant
materials may be harder and stiffer than the surrounding
tissues, thus anatomical or physiological mismatch may
occur, potentially resulting in tissue damage or causing
unwanted biological responses. Some materials may fatigue
over time and break which can disrupt the layer of endothe-
lial cells potentially causing thrombosis. Additionally, a
permanent implant is not always required. An implant may
only be required for a limited time period, therefore the
implant often must be surgically explanted when it is no
longer needed. To overcome some of these challenges, the
use of biodegradable polymeric implants has been proposed.
Examples of implantable biodegradable polymers include
the aliphatic polyester polylactic acid or polylactide (PLA)
and polyglycolide (PGA). PGA was originally proposed for
use in suture material in the late 1960’s. By the early 1970’s
PLA was proposed as a suture material including both the
optically active poly-L-lactide (PLLLA) and the racemic
mixture poly-DL-lactide (PDLA). PLLA has also been used
in biodegradable stents, as reported by Igaki and Tamai. A
co-polymer of PLA and PGA, known as PLGA has also been
proposed for use in implants. Another material which has
recently been proposed (in the 1980’s) for use in sutures and
orthopedic implants is polydioxanone. In the mid-1990’s
implantable drug delivery systems using polyanhydrides
were proposed by Langer et al. at the Massachusetts Institute
of Technology, and more recently tyrosine derived polyary-
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late has seen use in hernia repair and companies are devel-
oping biodegradable stents composed of materials such as a
tyrosine derived polycarbonate, poly(DTE carbonate).

While these newer biodegradable implant materials have
overcome some of the challenges of earlier implant mate-
rials, other potential drawbacks still exist. For example, it is
often desirable to adjust the shape of some implants in situ
so that the implant conforms more accurately to the anatomy
of the treatment site. However, the biodegradable polymers
cannot be plastically deformed, molded or shaped at normal
body temperatures since they must be solid at body tem-
perature. The implant must therefore be heated above its
glass transition temperature, T,. Often the glass transition
temperature is fairly high, for example PDLLA and PLLA
have a T, approximately 50°-80° C., therefore in situ heating
may result in localized tissue damage, thrombosis or patient
discomfort. It is well known that adding an impurity to a
material will change some of the material’s properties such
as increasing its boiling point and reducing its freezing
point. Therefore, additives may be mixed with the biode-
gradable polymers to decrease the glass transition tempera-
ture, for example 2-10% e-caprolactone added to 90-98%
PLLA can reduce the glass transition temperature down to
about 38°-55° C., but a heat source hotter than the glass
transition temperature may still be required due to heat
transfer inefficiencies or non-uniform heating, therefore,
similar complications may still arise.

One proposed solution to the challenge of non-uniform
heating is to coat the implant with a radiation absorbing
material which converts radiation to heat. Exemplary coat-
ings include chromophores like indocyanine green, vital
blue, carbon black and methylene blue. The radiation, often
ultraviolet or visible light must therefore be supplied in situ
from a second device due to the poor penetration of the
radiation through the tissue. Additionally, production of
sufficient and uniform heat using this technique remains a
challenge. Furthermore, the chromophores may degrade into
unwanted chemicals that are toxic to the body. Therefore,
there exists a need for an easier, less toxic and less invasive
way to heat implants, including biodegradable polymer
implants, to an elevated temperature so that they may be
shaped or molded in situ. Furthermore, such techniques
should also be able to heat the implant uniformly.

Additionally, while biodegradable implants will degrade
over time, it would also be desirable to be able to control the
rate of degradation. For example, when an implant is no
longer required, it would be desirable to be able to accelerate
the degradation rate so that the implant breaks down faster
than its normal in situ rate. For this reason, there is also need
for a way to control the degradation rate of a biodegradable
implant.

2. Description of the Background Art

Prior patents describing nanoshells for converting inci-
dent radiation into heat include: U.S. Pat. Nos. 6,344,272,
6,428,811; 6,530,944; 6,645,517, 6,660,381; 6,685,730,
6,699,724 6,778,316; and 6,852,252 Prior patents describ-
ing thermo-mechanically expansion of stents include: U.S.
Pat. Nos. 5,670,161; 5,741,323; 6,607,553; 6,736,842. Prior
patents describing meltable stents include: U.S. Pat. Nos.
4,690,684 and 4,770,176. Prior patent describing bioerod-
able polyanhydrides for controlled drug delivery include:
U.S. Pat. No. 4,891,225, Prior patents describing tyrosine
derived polycarbonate as an implant include: U.S. Pat. Nos.
6,951,053; 7,101,840; and 7,005,454. Prior patents describ-
ing biodegradable stents include: U.S. Pat. Nos. 5,733,327,
5,762,625, 5,817,100, 6,045,568; 6,080,177, 6,200,335,
6,413,272; 6,500,204; 6,632,242; RE38,653; RE38,711;
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7,066,952; and 7,070,615. The full disclosure of each of
these patents is incorporated herein by reference.

BRIEF SUMMARY OF THE INVENTION

The invention generally provides for an implant having a
plurality of particles dispersed therein. The particles are
adapted to convert incident radiation into heat energy when
the particles are irradiated with electromagnetic radiation.
The particles are in thermal contact with the implant and
therefore the heat generated by the particles raises the
temperature of the implant. The increased temperature
changes a material property of the implant.

In a first aspect of the present invention, an implant for use
in tissue comprises a structure that is adapted for implanta-
tion into the tissue and that has a first material property at
normal body temperature. The material property is variable
at an elevated temperature above normal body temperature.
The implant also comprises a plurality of particles that are
dispersed in the structure and that are adapted to convert
incident radiation into heat energy when the particles are
irradiated with electromagnetic radiation. The particles are
in thermal contact with the structure and thus exposure of the
particles to incident radiation raises the temperature of the
structure thereby changing the first material property.

In another aspect of the present invention, an expandable
implant for use in tissue comprises a structure that is adapted
for implantation into the tissue and that is not plastically
deformable at normal body temperature but that is plasti-
cally deformable at an elevated temperature above normal
body temperature. The implant also has a plurality of
particles dispersed in the structure and that are adapted to
convert incident radiation into heat energy when irradiated
with electromagnetic radiation. The particles are in thermal
contact with the structure such that exposure of the particles
to the incident radiation raises the temperature of the struc-
ture allowing it to be plastically deformed.

In yet another aspect of the present invention, an expand-
able, biodegradable implant for use in tissue comprises a
biodegradable structure that is adapted for implantation into
the tissue and that degrades at a first rate when implanted in
the tissue at normal body temperature. The implant also
comprises a plurality of particles that are dispersed in the
structure with the particles adapted to convert incident
radiation into heat energy when they are irradiated with
electromagnetic radiation. The particles are in thermal con-
tact with the structure such that exposure of the particles to
the incident radiation raises the temperature of the structure
thereby increasing the degradation rate of the structure
relative to the first rate.

The degradation rate of an implant may also be controlled
by using an additional reagent such as a catalyst or enzyme.
The reagent is adapted to react with the structure so as to
increase the structure’s degradation rate relative to the first
rate at normal body temperature. Often, the reagent is
dispersed in a carrier such as a microsphere along with
particles such as nanoshells. The microsphere, which may be
a hydrogel, is distributed in the implant structure and expo-
sure of the particles to incident radiation raises the tempera-
ture of the carrier or microsphere, thereby releasing the
reagent.

Often the structure is biodegradable and is composed of a
polymer or copolymer, either synthetic or natural, that is not
plastically expandable at normal body temperature but is
thermo-mechanically expandable at an elevated temperature
above normal body temperature. The structure is often
composed of one or more of the following materials includ-
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ing, polyhydroxyalkanoates, polyalphahydroxy acids, poly-
saccharides, proteins, hydrogels, lignin, shellac, natural rub-
ber, polyanhydrides, polyamide esters, polyvinyl esters,
polyvinyl alcohols, polyalkylene esters, polyethylene oxide,
polyvinylpyrrolidone, polyethylene maleic anhydride and
poly(glycerol-sibacate). The structure may also comprise
poly-L-lactide, poly-e-caprolactone or a biological fluid in
the solid state such as blood plasma. The material property
may be the biodegradation rate of the structure, viscosity or
the property may be the ability of the structure to be
plastically expanded.

Sometimes the structure may be a stent which may be
tubular and that is radially expandable at the elevated
temperature. The stent may comprise a tube having a side-
wall and the sidewall may define a plurality of openings
therein. Sometimes the structure may also have a therapeutic
agent that is adapted to be released therefrom. The thera-
peutic agent may be an anti-restenosis agent or it may be at
least one of the following, including antibiotics, thrombolyt-
ics, anti-thrombotics, anti-inflammatories, cytotoxic agents,
anti-proliferative agents, vasodilators, gene therapy agents,
radioactive agents, immunosuppressants, chemotherapeu-
tics, endothelial cell attractors, endothelial cell promoters,
stem cells and combinations thereof. Sometimes the struc-
ture may be adapted to be implanted into a breast or it may
be used to deliver a drug to the tissue. The structure may also
be used to exclude aneurysms or it may be an orthopedic
implant.

The particles may comprise nanoparticles or nanoshells
and often the particles have a non-conducting core layer
such as silicon dioxide, with a first thickness and a conduct-
ing outer shell layer, such as gold, adjacent to the core layer
with a second thickness. The ratio of the first thickness to the
second thickness defines a maximum wavelength of elec-
tromagnetic radiation converted by the particles into heat.
Sometimes the particles are substantially spherical. Often
the elevated temperature is in the range from about 38° C.
to about 60° C. and the electromagnetic radiation often is
ultraviolet, visible, near infrared or infrared light.

In another aspect of the present invention, a method of
controlling a material property of an implant comprises the
steps of providing an implant having a plurality of particles
dispersed therein. The implant has a first material property
when implanted in tissue at normal body temperature and
the material property is variable at an elevated temperature
above normal body temperature. Exposing the implant to
electromagnetic radiation results in the incident radiation
being converted into heat energy thus raising the tempera-
ture of the implant above normal body temperature and
thereby changing the material property relative to the first
material property.

In yet another aspect of the present invention, a method of
delivering an expandable implant to a treatment site in a
body comprises providing an implant having a plurality of
particles dispersed therein and positioning the implant at the
treatment site. Positioning may include advancing a catheter
through a body lumen with the implant disposed on the
catheter. Exposing the implant to electromagnetic radiation
allows the particles to convert the incident radiation into
heat energy. The heat energy raises the implant temperature
above its glass transition temperature such that the implant
may be plastically deformed so as to change its shape.
Expanding the implant may include expanding a balloon.

In another aspect of the present invention, a method of
controlling the degradation rate of an implant comprises
providing a biodegradable implant having a plurality of
particles dispersed therein. The implant degrades at a first
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rate when implanted in tissue at normal body temperature.
Exposing the implant to electromagnetic radiation allows the
particles to convert the incident radiation into heat energy
which raises the temperature of the implant above normal
body temperature. The elevated temperature changes the
biodegradation rate of the implant relative to the first rate.
Exposing the implant may include irradiating a carrier such
as a microsphere, dispersed in the implant and containing a
reagent and particles. The carrier heats up and releases the
reagent when irradiated and the reagent reacts with the
implant to degrade it. The reagent may be an enzyme or
catalyst.

The method may also comprise discontinuing exposure of
the implant to the electromagnetic radiation in order to allow
the implant to cool down so that it returns to body tempera-
ture so that the implant is substantially undeformable plas-
tically at body temperature. The method may also include
monitoring the temperature of implant. Exposing the
implant to electromagnetic radiation may include exposing
the implant from outside the body or from within the body.
Sometimes a catheter may be used to deliver the radiation to
the implant. The radiation may be delivered for a fixed
duration of time, continuously for a defined period or over
periodic intervals until a desired temperature obtained in the
implant.

These and other embodiments are described in further
detail in the following description related to the appended
drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B show nanoshells having various outer shell
thicknesses.

FIG. 2 illustrates the optical resonances of metal
nanoshells having various ratios of core radius to shell
thickness.

FIG. 3A shows a biodegradable stent having nanoshells
dispersed therein.

FIG. 3B shows a nanoshell generating heat in a section of
the stent shown in FIG. 3A.

FIG. 3C shows an implant made from frozen biological
fluid and having nanoshells dispersed therein.

FIG. 3D shows the implant of FIG. 3C used to facilitate
creation of an anastomosis.

FIGS. 4A-4B illustrate a preferred embodiment of a stent
in the unexpanded and expanded state.

FIGS. 5A-5E illustrate stent expansion in accordance with
an exemplary embodiment.

FIGS. 6 A-6E illustrate stent biodegradation in accordance
with an exemplary embodiment.

FIG. 7 illustrates a microsphere containing nanoshells and
a chemical reagent dispersed therein.

FIGS. 8A-8D illustrate expansion of a breast implant in
accordance with an exemplary embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

FIGS. 1A and 1B illustrate nanoshells having various
outer shell thicknesses. Nanoshells are nanoparticles having
a diameter ranging from a few nanometers up to about 5
microns. The nanoshells are composed of a non-conducting,
semiconductor or dielectric inner core layer and an ultra thin
conducting outer shell layer. In the exemplary embodiment
of FIG. 1A, nanoshell 100 is spherically shaped and has an
outer spherical shell 102 made from gold. A portion 104 of
outer shell 102 has been removed in FIG. 1A so that the
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inner spherical core 106 is visible. Inner core 106 is made
from silicon dioxide. Other common materials that may be
utilized for the inner core include, but are not limited to, gold
sulfide, titanium dioxide, polymethyl methacrylate, polysty-
rene and macromolecules such as dendrimers. Metals which
are well suited for use in the outer shell also include, but are
not limited to silver, copper, platinum, palladium, lead, iron
and the like. Nanoshells may be made with various inner
core diameters and outer shell thicknesses. FIG. 1B illus-
trates another nanoshell 110 having a thinner outer shell 112
compared with the outer shell 102 of FIG. 1A. The nanoshell
in FIG. 1B also has a section 114 of outer shell 112 removed
so that the inner core 106 is visible.

Nanoshells have a unique ability to interact with specific
wavelengths of electromagnetic radiation and effectively
convert the incident radiation into heat energy. By adjusting
the relative core and shell thicknesses, and choice of mate-
rials, nanoshells can be fabricated that will react with or
scatter light at any wavelength across much of the ultravio-
let, visible and infrared range of the electromagnetic spec-
trum. The nanoshell may therefore be tuned to specific
wavelengths of electromagnetic radiation and the conver-
sion of incident radiation to heat energy can be optimized.

FIG. 2 shows a graph 200 of the optical resonances of
metal nanoshells having various ratios of core radius to shell
thickness. In FIG. 2, nanoshells 202 and 204 both have a 60
nm inner core made from silicon dioxide. Nanoshell 202 has
a gold outer shell, 20 nm thick and the resulting maximum
absorption wavelength is approximately 740 nm. As the
shell thickness decreases, the maximum absorption wave-
length increases. Nanoshell 204 has a gold shell layer 5 nm
thick and the resulting maximum absorption wavelength is
approximately 1010 nm. The tunability of nanoshells,
including the relationship between the ratio of core diameter
to shell thickness and maximum absorption wavelength is
more fully discussed in U.S. Pat. No. 6,344,272 which has
previously been incorporated herein by reference.

Nanoshells are well described in the scientific and patent
literature. Other aspects of nanoshells such as manufacturing
methods, materials and principles of operation are described
in U.S. Pat. Nos. 6,428,811; 6,530,944; 6,645,517, 6,660,
381; 6,685,730; 6,699,724; 6,778,316; and 6,852,252, the
entire contents of which have previously been incorporated
herein by reference.

Because nanoshells are efficient at converting incident
radiation into heat, they may be dispersed in implants and
light or other forms of electromagnetic radiation may be
used to heat up the implant. Furthermore, since a nanoshell
may be tuned to certain wavelengths, a nanoshell that
preferentially interacts with light at near infrared wave-
lengths between approximately 700 and approximately 2500
nm is desirable, and more preferably between about 800 nm
and 1200 nm, since this range of wavelengths is transmitted
through tissue with very little absorption and therefore
relatively little attenuation. Thus the majority of the light is
delivered to the nanoparticles, converted into heat and
transferred to the implant in which the nanoparticles are
dispersed. This makes external access to an implanted
device possible and heating of the tissue surrounding the
implant is substantially avoided. One particular source of
near infrared light, a Nd:YAG laser emits light at a wave-
length of 1064 nm and hence is ideal for irradiating an
implant from outside the body. Additionally, in the case of
a biodegradable implant, as the implant breaks down the
nanoshells are released into surrounding tissue. Due to their
small size, the nanoshells are easily purged by body systems
such as the kidneys. Nanoshells therefore present a unique
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way of allowing an implant to be heated from outside the
body with minimal biocompatibility issues.

FIG. 3A shows an implantable stent 300. Stents are
defined to include any of the array of expandable prostheses
and scaffolds which are introduced into a lumen at a target
treatment site and expanded in situ thereby exerting a
radially outward force against the lumen wall to restore
patency. Stents may be implanted in a number of lumens
including the coronary and peripheral vasculature, biliary
ducts, urethra and ureter, as well as other body cavities.
Urethral and ureter stents are well reported in the patent
literature, including for example U.S. Pat. Nos. 7,112,226
and 7,044,981, the entire contents of which are incorporated
herein by reference. Other stents are discussed and incor-
porated below. Stent 300 is a tubular prosthesis made from
any material 302 that is solid at normal body temperature
and that may be plastically deformed at an elevated tem-
perature. Examples include standard engineering thermo-
plastics such as polyurethane and others well known to those
skilled in the art, including biodegradable polymers like
polylactide. Stent 300 may optionally be a copolymer con-
taining 2-10% of poly-e-caprolactone so as to adjust the
mechanical properties of the stent, including lowering the
glass transition temperature to just above normal body
temperature. In preferred embodiments, the copolymer stent
300 has a glass transition temperature in the range from
about 40° to about 60° C. Stent 300 may also comprise
plasticizers to further soften the implant. The plasticizers
should be biocompatible such as oleic acid and linoleic acid
which are classified under Food and Drug Administration
(FDA) guidelines for food additives as being Generally
Recognized as Safe (GRAS). The stent 300 may be deliv-
ered to the site of a stenotic lesion or an intimal dissection
and expanded in situ in order to restore patency of a vessel.

In FIG. 3A, preferably 0.0001 to 1% nanoparticles 304,
more preferably 0.00025% to 0.5%, and most preferably
0.0005% to 0.1% nanoparticles are dispersed in the stent
300. The nanoparticles 304 may be tuned to interact with
many forms of electromagnetic radiation including micro-
waves, ultrasound, magnetic fields, electric fields, radiofre-
quency, infrared, visible, ultraviolet, laser, x-rays, gamma
rays and cosmic rays. However, in this exemplary embodi-
ment, the nanoparticles 304 are preferably tuned to interact
with near infrared radiation having a wavelength approxi-
mately 1064 nm so that that a Nd:YAG laser may be used to
irradiate stent 300 from outside the body. The nanoparticles
304 in this embodiment are preferably nanoshells having an
outer shell composed of gold and an inner core composed of
silicon dioxide. The nanoparticles 304 convert the incident
radiation into heat, thereby heating the polymer matrix
above its glass transition temperature and allowing stent 300
to be plastically deformed into a lesion with a balloon or
other expandable member in situ. Optionally, stent 300 may
also include quantum dots dispersed therein. Quantum dots
have many desirable characteristics, including favorable
optical properties. The quantum dots may be used to help
visualize stent 300 while in situ since they fluoresce when
irradiated with certain wavelengths of light. Examples of
materials used to fabricate quantum dots include cadmium
selenide, cadmium sulfide, zinc sulfide and zinc selenide.

FIG. 3B illustrates a section 308 of FIG. 3A which has
been enlarged to show how incident radiation 312 interacts
with nanoparticle 304 such that the radiation 312 is con-
verted into heat by nanoparticle 304 and the heat 310 is
emitted to the surrounding polymer matrix 302. In this
exemplary embodiment, stent 300 is a tubular prosthesis
without any apertures in the sidewalls and therefore it could
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also be used to exclude an aneurysm. However, this is not
meant to be limiting and stent 300 may be modified to
include apertures in the sidewalls.

In many of the embodiments described herein, near infra-
red light is used to irradiate the nanoparticles and generate
heat. However, it should be obvious to one of ordinary skill
in the art that many wavelengths of electromagnetic radia-
tion may also be used, including a magnetic field. The
nanoparticles may be magnetically responsive so that they
produce heat upon exposure to a magnetic field. Examples
of magnetically responsive materials include iron oxides,
magnetite (Fe;O,) and maghemite (y-Fe;0;).

FIGS. 4A and 4B illustrate a preferred embodiment of one
possible stent geometry. In FIG. 4A a portion of stent
segment 32 is shown in a planar shape for clarity. Stent
segment 32 comprises parallel rows 122A, 122B and 122C
of I-shaped cells 124 formed into a cylindrical shape around
axial axis A. Cells 124 have upper and lower axial slots 126
and a connecting circumferential slot 128. Upper and lower
slots 126 are bounded by upper axial struts 132, lower axial
struts 130, curved outer ends 134, and curved inner ends
136. Circumferential slots 128 are bounded by outer cir-
cumferential strut 138 and inner circumferential strut 140.
Each I-shaped cell 124 is connected to the adjacent I-shaped
cell 124 in the same row 122 by a circumferential connecting
strut 142. Row 122A is connected to row 122B by the
merger or joining of curved inner ends 136 of at least one of
upper and lower slots 126 in each cell 124.

In FIGS. 4A-4B, the stent includes a bulge 144 in upper
and lower axial struts 130, 132 extending circumferentially
outwardly from axial slots 126. These give axial slots 126 an
arrowhead or cross shape at their inner and outer ends. The
bulge 144 in each upper axial strut 130 extends toward the
bulge 144 in a lower axial strut 132 in the same cell 124 or
in an adjacent cell 124, thus creating a concave abutment
146 in the space between each axial slot 126. Concave
abutments 146 are configured to receive and engage curved
outer ends 134 of cells 124 in the adjacent stent segment,
thereby maintaining spacing between the stent segments.
The axial location of bulges 144 along upper and lower axial
struts 130, 132 may be selected to provide the desired degree
of inter-segment spacing.

FIG. 4B shows a stent 32 of FIG. 4A in an expanded
condition. It may be seen that axial slots 124 are deformed
into a circumferentially widened modified diamond shape
with bulges 144 on the now diagonal upper and lower axial
struts 130, 132. Circumferential slots 128 are generally the
same size and shape as in the unexpanded configuration.
Bulges 144 have been pulled away from each other to some
extent, but still provide a concave abutment 146 to maintain
a minimum degree of spacing between adjacent stent seg-
ments. As in the earlier embodiment, some axial shortening
of each segment occurs upon expansion and stent geometry
can be optimized to provide the ideal intersegment spacing.

It should also be noted that the embodiment of FIGS.
4A-4B also enables access to vessel side branches blocked
by stent segment 32. Should such side branch access be
desired, a dilatation catheter may be inserted into circum-
ferential slot 128 and expanded to provide an enlarged
opening through which a side branch may be entered.

A number of other stent geometries are applicable and
have been reported in the scientific and patent literature.
Other stent geometries include, but are not limited to those
disclosed in the following U.S. Patents, the full disclosures
of which are incorporated herein by reference: U.S. Pat.
Nos. 6,315,794; 5,980,552; 5,836,964; 5,527,354; 5,421,
955; 4,886,062; and 4,776,337.
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Referring back to FIG. 3A, stent 300 may also comprise
a therapeutic agent 306. In preferred embodiments, stent 300
may be coated, impregnated, infused or otherwise coupled
with one or more drugs that inhibit restenosis, such as
Rapamycin, Everolimus, Biolimus A9, Paclitaxel, prodrugs,
or derivatives of the aforementioned, or other suitable
agents, preferably carried in a durable or bioerodable carrier
of polymeric or other suitable material. Alternatively, stent
300 may be coated with other types of drugs or therapeutic
materials such as antibiotics, thrombolytics, anti-thrombot-
ics, anti-inflammatories, cytotoxic agents, anti-proliferative
agents, vasodilators, gene therapy agents, radioactive
agents, immunosuppressants, chemotherapeutics, endothe-
lial cell attractors or promoters and/or stem cells. Such
materials may be coated over all or a portion of the surface
of stent 300, or stent 300 may have a porous structure or
include apertures, holes, channels, or other features in which
such materials may be deposited.

FIG. 3C illustrates an implant where nanoshells may be
used to control the degradation of the implant. In an exem-
plary embodiment, a stent 325 is adapted for creating an
anastomosis. The stent 325 may be made from a variety of
meltable materials including polymers, frozen blood plasma
or other biological fluids in the solid state. Nanoshells 330
are dispersed in the stent 325. FIG. 3D shows the stent 325
placed into the ends V1, V2 of the two vessels to be
connected together, thereby aligning the ends together so
that they may be sutured or thermally bonded together,
creating an anastomosis 352. In this embodiment, after the
stent 325 has been placed into the vessel ends, V1, V2, and
the ends have been connected together, stent 325 may be
irradiated with near infrared light from outside the body. The
nanoshells 330 convert the incident radiation into heat. The
resulting heat melts the stent 325 thereby creating a patent
lumen for fluid flow. Further details on meltable stents are
disclosed in U.S. Pat. Nos. 4,690,684 and 4,770,176, the
entire contents of which are fully incorporated herein by
reference.

Referring now to FIGS. 5A-5E, the deployment of a stent
to treat a stenotic lesion is shown in accordance with an
exemplary embodiment. While the embodiment will be
described in the context of a femoral artery stent procedure,
it should be understood that the invention may be employed
in any variety of coronary or peripheral arteries, blood
vessels and other body lumens in which stents or tubular
prostheses are deployed, including the carotid and iliac
arteries, blood vessels in the brain, other arteries or veins, as
well as non-vascular body lumens such as the ureter, urethra,
fallopian tubes, the hepatic and biliary duct and the like. In
FIG. 5A, a stent delivery catheter 500 includes a stent 502
having a plurality of nanoshells 512 dispersed therein and
mounted over an expandable balloon 506 attached to the
distal end of catheter shaft 504. In this exemplary embodi-
ment, a single biodegradable stent 502 is disposed on the
delivery catheter 500, although multiple stents may also be
disposed on the delivery catheter 500. Stent 502 is prefer-
ably composed of a copolymer containing approximately 90
to 99% polylactide with 1 to 10% poly-e-caprolactone, and
more preferably 95 to 99% polylactide with 1 to 5%
poly-e-caprolactone, uniformly blended with preferably
0.0001 to 1% gold nanoshells, more preferably 0.00025% to
0.5%, and most preferably 0.0005% to 0.1% gold nanoshells
that are tuned to convert near infrared light into heat. Stent
502 may also be fabricated from any material that is solid at
normal body temperature and that can be plastically
deformed at an elevated temperature, thus many other poly-
mers such as polyurethanes as well as other biodegradable
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materials may be used to fabricate the stent 502. Delivery
catheters such as over-the-wire systems and rapid exchange
systems are well known in the art and may be used to deliver
stent 502 to the lesion L.

Having multiple stents allows the physician operator to
select the number of stents to deliver and thus customization
of stent length is possible, as disclosed in U.S. Patent
Publication Nos. 2006/0282150 and 2007/0027521, the
entire contents of which are incorporated herein by refer-
ence. Additionally, other customizable-length stent delivery
systems have been proposed for delivering multiple stent
segments and these may also be used to deliver one or more
stents 502. Prior publications describing catheters for deliv-
ering multiple segmented stents include: U.S. Pat. Nos.
7,309,350, 7,326,236; 7,137,993; and 7,182,779; U.S. Pat-
ent Publication Nos. 2005/0038505; 2004/0186551; and
2003/0135266. Prior related U.S. Patent Applications, Pub-
lications and Provisionals include Ser. Nos. 2006/0282150;
2006/0282147; 2007/0179587; 2007/0067012; 60/784,309;
and Ser. No. 11/462,951. The full disclosures of each of
these patents and applications are incorporated herein by
reference.

In. FIG. 5A, the delivery catheter 500 is introduced into
a treatment vessel first, by placing an introducer sheath (not
illustrated) into the target peripheral artery, typically using a
percutaneous procedure such as the Seldinger technique or
by surgical cutdown. In this exemplary embodiment, the
target vessel is a femoral artery. The introducer sheath is
then advanced slightly into the femoral artery. A guidewire
GW is then inserted through the introducer and advanced
into the target vessel V where a lesion L to be treated is
located. The proximal end of guidewire GW is then inserted
through the distal end of catheter shaft 504, through a lumen
in catheter shaft 504, exiting at the proximal end of catheter
shaft 504, which is outside the patient’s body.

Stent delivery catheter 500 is then slidably advanced over
the guidewire GW into the vessel V so that stent 502
traverses the lesion L. Optional radiopaque markers (not
illustrated) may be placed on the catheter shaft 504 in order
to facilitate visualization of the delivery catheter under
fluoroscopy. Once the delivery catheter has been properly
positioned in the vessel, the stent 502 may be heated up to
facilitate its expansion.

In FIG. 5B, an external source of electromagnetic radia-
tion 508 is used to irradiate stent 502 so as to heat it up. In
FIG. 5B, the external source of radiation is preferably a
Nd:YAG laser which emits a wavelength of light approxi-
mately 1064 nm. This wavelength is applied extracorporally
and the light 510 is transmitted through the tissue T to the
stent 502. Nanoshells 512 dispersed in the stent 502 are
tuned to convert the light into heat. Heat generated by
nanoshells 512 is transferred to the polymer which makes up
stent 502, thereby heating it up. In addition or as an
alternative to applying extracorporeal radiation, radiation
may be applied in situ. FIG. 5C shows a fiber optic catheter
514 deployed alongside delivery catheter 500. The fiber
optic catheter 514 is adapted to deliver the Nd:YAG laser
light 516 directly to stent 502. In some embodiments, the
delivery catheter 500 and the fiber optic catheter 514 may be
combined into a single device that heats and deploys stent
502. In some embodiments, fiber optic catheter 514 includes
an optional diffuser (not shown). The diffuser is adapted to
spread out and scatter the radiation so as to cover a larger
area of the stent 502.

Radiation is applied until the temperature of stent 502 is
above its glass transition temperature, T, which is approxi-
mately 40°-60° C. in this exemplary embodiment. The
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exposure time is dependent upon many factors, including
but not limited to, area of radiation coverage, wavelength
and intensity of the radiation, type and mass of the implant
material and nanoshell concentration. Therefore, exposure
time could range from a few seconds to a few hours, and
more preferably from about 10 seconds to about an hour.
Longer exposure times are not desirable due to patient
inconvenience.

Stent 502 is fabricated from a material having a glass
transition temperature above normal body temperature.
Therefore, stent 502 is solid at or below normal body
temperature. Normal body temperature is approximately 37°
C., therefore the stent 502 material is selected to have a T,
slightly higher than 37° C., yet not so high that the tem-
perature required to heat the stent above T, results in tissue
damage.

Once the temperature of stent 502 is raised above the glass
transition temperature, it’s viscosity decreases, permitting
stent 502 to be plastically deformed. In FIG. 5D, balloon 506
is expanded, typically with contrast media and/or saline and
an inflation device such an Indeflator™, manufactured by
Abbott (formerly Guidant Corp., Santa Clara, Calif.). Stent
502 is soft and therefore expands with balloon 506 to an
expanded state 518, covering lesion L. After stent 502 has
been enlarged to its expanded state 518, application of
radiation may be discontinued, allowing stent 518 to cool
down to body temperature. When stent 518 cools down, it
solidifies and permanently retains its expanded shape. In
FIG. 5E, balloon 506 is then deflated and delivery catheter
500 is withdrawn from the vessel, leaving stent 518 with
nanoshells 512 in place. Stent 518 is composed of biode-
gradable materials and therefore, over time will degrade,
releasing nanoshells 512 into the vascular system where they
will be filtered and purged out of the body by the kidneys.

Referring now to FIGS. 8A-8D, the expansion of an
implant for breast augmentation during cosmetic and recon-
structive procedures (e.g. after mastectomy) is shown in
accordance with an exemplary embodiment. In FIG. 8A, an
implant 804 having nanoparticles 814 dispersed therein is
implanted using standard surgical or minimally invasive
techniques into a breast 802. The implant may be any
biocompatible thermoplastic or material that is solid at
normal body temperature and that may be plastically
deformed upon heating. Examples of such materials include,
but are not limited to polyurethanes, polyethylene, and PVC.
Nanoparticles 814 may be tuned to convert any wavelength
of electromagnetic radiation into heat, however, in this
exemplary embodiment, nanoparticles 814 are tuned to near
infrared light, such as that provided by a Nd:YAG laser.

In FIG. 8B, the breast 802 is irradiated with near infrared
light 808 from an Nd:YAG laser 806. As previously dis-
cussed, this wavelength of light is easily transmitted through
tissue without being attenuated. The light 808 therefore
irradiates the nanoparticles 814, here preferably nanoshells
having a gold outer shell and a silicon dioxide inner core,
such that the incident radiation is converted into heat. The
heat raises the temperature of implant 802 above its glass
transition temperature, lowering its viscosity and softening
the implant 802. A syringe 810 may then be used to fill the
implant 804 with a fluid such as saline in order to expand the
implant to a larger volume as seen in FIG. 8C. Once the
breast 802 has been enlarged to a desired size and/or shape,
irradiation 808 may be suspended allowing the implant 804
to cool down and solidify and permanently retain the
expanded shape. Syringe 810 may then be removed as
shown in FIG. 8D. In alternative embodiments, other
expandable members, such as a balloon catheter could be
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used to expand the implant. Additionally, repeat treatments
may be applied as required in order to fine tune the implant
to obtain a more desirable clinical result, or to accommodate
changes in breast size or shape that occur with aging. Similar
implants may also be used in other areas of the body, such
as for shaping the chin, nose, lips, face, buttocks, calf, legs,
thighs, legs, or any part of the body.

Nanoshells may also be used to control the degradation
rate of a biodegradable implant. FIGS. 6A-6E illustrate a
method of controlling the degradation rate of a biodegrad-
able implant by using nanoshells to heat up the implant,
thereby accelerating the rate at which the implant degrades
in situ. In this exemplary embodiment, degradation of a stent
is described. However, this is not meant to be limiting, as
biodegradation of a number of other implants may be
controlled in a similar manner. For example, ureteral
implants, ocular implants or drug delivery devices (e.g. for
treatment of cancer or diabetes), need only be implanted for
a limited time, therefore it is desirable to be able to accel-
erate their degradation so as to avoid having to surgically
remove them. In FIG. 6A, a stent 602 has been expanded and
implanted at the site of a stenotic lesion L in a vessel V. The
vessel may be a coronary artery, a peripheral artery or any
body lumen or cavity. Stent 602 is composed of a biode-
gradable polymer having a plurality of nanoshells 604
dispersed therein. In this exemplary embodiment, stent 602
is preferably composed of a copolymer having approxi-
mately 90 to 99% polylactide and 1 to 10% poly-e-capro-
lactone, and more preferably 95 to 99% polylactide and 1 to
5% poly-e-caprolactone, uniformly blended with 0.0001 to
1%, more preferably 0.00025% to 0.5% and most preferably
0.0005% to 0.1% gold nanoshells that are tuned to convert
near infrared light having a wavelength in the range from
about 700 nm to about 2500 nm, and more preferably
between about 800 nm and 1200 nm into heat. Other
biodegradable polymers and nanoshells are possible, and
this exemplary embodiment is not intended to be limiting.

Some examples of other biodegradable materials include
polyesters such as polyhydroxyalkanoates (PHA) and poly-
alphahydroxy acids (AHA). Exemplary PHAs include, but
are not limited to polymers of 3-hydroxypropionate, 3-hy-
droxybutyrate, 3-hydroxyvalerate, 3-hydroxycaproate,
3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hy-
droxynonanoate, 3-hydroxydecanoate, 3-hydroxyundecano-
ate, 3-hydroxydodecanoate, 4-hydroxybutyrate and 5-hy-
droxyvalerate. Examples of AHAs include, but are not
limited to various forms of polylactide or polylactic acid
including PLA, PLLA or PDLLA, polyglycolic acid and
polyglycolide, poly(lactic-co-glycolic acid), poly(lactide-
co-glycolide), poly(e-caprolactone) and polydioxanone.
Polysaccharides including starch, glycogen, cellulose and
chitin may also be used as a biodegradable material. It is also
feasible that proteins such as zein, resilin, collagen, gelatin,
casein, silk or wool could be used as a biodegradable
implant material. Still other materials such as hydrogels
including poly(hydroxyethyl methylacrylate), polyethylene
glycol, poly(N-isopropylacrylamide), poly(N-vinyl-2-pyr-
rolidone), cellulose polyvinyl alcohol, silicone hydrogels,
polyacrylamides, and polyacrylic acid are potential biode-
gradable implant materials. Other potential biodegradable
materials include lignin, shellac, natural rubber, polyanhy-
drides, polyamide esters, polyvinyl esters, polyvinyl alco-
hol, polyalkylene esters, polyethylene oxide, polyvinylpyr-
rolidone, polyethylene maleic anhydride and poly(glycerol-
sibacate). Still another potential biodegradable material
include the polyphosphazenes developed by Harry R. All-
cock at Pennsylvania State University.
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In FIG. 6B, a Nd: YAG laser 610 is used to extracorporally
irradiate stent 602 with near infrared light 612. Light 612
supplied from laser 610 is at a wavelength approximately
1064 nm which can pass through tissues T without being
significantly absorbed. The light 612 irradiates stent 602 and
nanoshells 604 dispersed in the stent 602 interact with the
light 612 and convert it into heat which raises the tempera-
ture of stent 602. Optionally, as an alternative or supplement
to light 612 from laser 610, a fiber optic catheter 606 may
be advanced to the site of the stent 602 using standard
catheter delivery techniques and near infrared light 608 from
a Nd:YAG laser may be intravascularly delivered to stent
602 to further irradiate stent 602. The exposure time is
dependent upon many factors, including but not limited to,
area of radiation coverage, wavelength and intensity of the
radiation, type and mass of biodegradable material,
nanoshell concentration, and concentration of any catalysts
or enzymes in the implant. Therefore, exposure time could
range from a few seconds to a few hours, and more prefer-
ably from about 10 seconds to about an hour. Exposure times
greater than an hour, such as those seen in phototherapy
regimes used to treat neonatal jaundice or in Crigler-Najjar
syndrome (e.g. 12 hours/day) become impractical due to
patient inconvenience. Stent 602 is irradiated to a tempera-
ture above the glass transition temperature, which as
described above is selected to be slightly higher than normal
body temperature and low enough to minimize potential
tissue thermal damage.

As stent 602 temperature increases, naturally occurring
chemical reactions between the body and the stent 602 are
accelerated, thereby increasing the rate at which stent 602
breaks down. In FIG. 6C, stent 602 has partially degraded.
Continued irradiation of stent 602 with near infrared light
608 and 612 maintains the stent 602 at an elevated tempera-
ture and the stent continues to break down as shown in FIG.
6D. This process continues until the entire stent 602 has
degraded into low molecular weight, non-toxic products and
therefore is removed from lesion L, as shown in FIG. 6E.
Nanoshells 604 in the stent 602 are released into the vascular
system during degradation and they are small enough to be
filtered out of the body by the kidneys.

In alternative embodiments, a microsphere containing
nanoshells and a chemical reagent may be dispersed in the
implant and used to accelerate biodegradation even more
than previously described. FIG. 7 illustrates a microsphere
700, having a diameter approximately in the range of 1-10
um and made from a hydrogel 704 such as polyvinyl
alcohol, sodium polyacrylate, acrylate polymers and copo-
lymers having an abundance of hydrophilic groups. Other
hydrogels have been previously discussed. Nanoshells 702
are dispersed within the microsphere 700 along with a
chemical reagent 706. The reagent may be any substance
which reacts with an implant to degrade it. Examples of
possible reagents include, but are not limited to hydrolases
that catalyze hyrolysis of various bonds, lyases that cleave
various bonds by means other than hydrolysis or oxidation
and oxidases that cause oxidation. The use of these reagents
can accelerate the rate of biodegradation relative to the
method described above with respect to FIGS. 6A-6E. When
the microsphere 700 is irradiated, the nanoshells 702 convert
the incident radiation into heat thereby raising the tempera-
ture of microsphere 700. As described previously, the irra-
diation time is dependent upon many factors, including but
not limited to, area of radiation coverage, intensity of the
radiation, type and mass of biodegradable polymer,
nanoshell concentration, hydrogel water concentration, and
concentration of any catalysts or enzymes in the implant.
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Therefore, exposure time could range from a few seconds to
a few hours, and more preferably from about 10 seconds to
about an hour. In some embodiments, it may be desirable to
spread the implant irradiation over multiple sessions, such a
weekly, monthly or daily either for patient convenience or to
control the bioerosion process.

As the microsphere 700 is irradiated and heats up, it
expands and releases the reagent E into the implant material.
The reagent begins to chemically react with the implant
material, breaking it down, thus accelerating the in situ
biodegradation rate. Additional information on methods of
use, materials and principles of operation of controlled drug
delivery systems are reported in the scientific and patent
literature including U.S. Pat. No. 6,645,517 (West et al.) and
U.S. Pat. No. 4,891,225 (Langer et al.), the entire contents
of which are incorporated herein by reference. In other
embodiments, an implant having different layers of degrad-
able materials could be independently degraded by selec-
tively releasing various reagents E from the microsphere 700
at different temperatures. The various layers could be bio-
eroded away at the same time during a single treatment
session, or the layers may be selectively bioeroded away
with multiple exposures to eclectromagnetic radiation at
different times.

While the exemplary embodiments have been described
in some details for clarity of understanding and by way of
example, a variety of additional modifications, adaptations
and changes may be clear to those of skill in the art. Hence,
the scope of the present invention is limited solely by the
appended claims.

What is claimed is:

1. A polymeric orthopedic implant for use in tissue where
the implant comprises a polymer having a plurality of
metallic nanoshells dispersed within the polymer, wherein
the nanoshells are covered with a metal selected from the
group consisting of: palladium, silver, platinum, and gold,
and wherein the polymer has a glass transition temperature
of'between 38° and 60° C. and a first material property when
implanted in tissue at normal body temperature, the material
property being variable at an elevated temperature above the
glass transition temperature when the implant is exposed to
electromagnetic radiation in the range of about 800 nm to
1200 nm, the radiation being converted into heat energy via
the plurality of nanoshells thus uniformly raising the tem-
perature of the polymer above the glass transition tempera-
ture, and thereby changing the material property relative to
the first material property where the material property is at
least one of:

(1) the ability of the implant to be plastically deformed
such that the implant is not plastically deformable at
normal body temperatures but is plastically deformable
at an elevated temperature above normal body tem-
perature or

(ii) the viscosity of the implant where the implant has a
lower viscosity at an elevated temperature above nor-
mal body temperature or

(ii1) the biodegradation rate of the implant where the
polymer of the implant is biodegradable.

2. The implant of claim 1 wherein the nanoshells are

covered with gold.

3. The implant of claim 1 wherein the polymer further
comprises a microsphere carrier containing a reagent which
is released upon exposure to radiation.

4. The implant of claim 3 wherein the reagent reacts with
the implant to degrade it.

5. The implant of claim 3 wherein the reagent is an
enzyme.
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6. The implant of claim 1 wherein the polymer is a
standard engineering plastic.

7. The implant of claim 1 wherein the polymer is selected
from the group consisting of polyhydroxyalkanoates and
polyalphahydroxy acids.

8. The implant of claim 1 wherein the polymer is biode-
gradable.

9. The implant of claim 1 wherein the polymer is selected
from the group consisting of polymers of 3-hydroxypropi-
onate, 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxy-
caproate, 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hy-
droxynonanoate, 3-hydroxydecanoate,
3-hydroxyundecanoate, 3-hydroxydodecanoate, 4-hydroxy-
butyrate and S5-hydroxyvalerate.

10. The implant of claim 1 wherein the polymer is
selected from the group consisting of monomers of poly-
lactide, polyglycolide, poly(lactide-co-glycolide), poly(e-
caprolactone) and polydioxanone.

11. A polymeric orthopedic implant for use in tissue where
the implant comprises a polymer having a plurality of
metallic nanoshells dispersed within the polymer, wherein
the nanoshells are covered with a metal selected from the
group consisting of: palladium, silver, platinum, and gold,
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and wherein the polymer has a glass transition temperature
of'between 40° and 60° C. and a first material property when
implanted in tissue at normal body temperature, the material
property being variable at an elevated temperature above the
glass transition temperature when the implant is exposed to
electromagnetic radiation in the range of about 800 nm to
1200 nm, the radiation being converted into heat energy via
the plurality of nanoshells thus uniformly raising the tem-
perature of the polymer above the glass transition tempera-
ture, and thereby changing the material property relative to
the first material property where the material property is at
least one of:

(1) the ability of the implant to be plastically deformed
such that the implant is not plastically deformable at
normal body temperatures but is plastically deformable
at an elevated temperature above normal body tem-
perature or

(ii) the viscosity of the implant where the implant has a
lower viscosity at an elevated temperature above nor-
mal body temperature or

(ii1) the biodegradation rate of the implant where the
polymer of the implant is biodegradable.
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